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Introduction

ALE (Lagrange+Remap) algorithms:

� often use local mesh adjustments improve/untangle meshes

� geometry based optimization seems to be standard (eg smoothing)

Better to adapt the mesh to reduce the error in the solution:

�  geometric “niceness” is often insufficient, ignores solution behavior

�  the mesh spacing requirements change during the simulation

�  multi-physics simulations often have competing demands

�  adjust mesh to capture unresolved features (shocks, etc)

Of course, we would like:

� to adjust the mesh only in regions that require it 

� minimal user interaction
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Mesh quality

Mesh quality assessment based on P. Knupp's Algebraic
Mesh Quality metrics (Knupp '99).

These metrics use properties of the Jacobian of the (linear)
mapping between the actual and the "ideal" element:

Useful metrics include :
det(J) – scaled size
K(J) - Condition number or C/K(J) - "shape" metric
min(det(J), 1/det(J))  C / K(J) – combined shape and size metric

xi xp= Jxi J



Mesh quality

Computing the Jacobian between the "ideal"
element and the actual element (Pat Knupp) :

W : determined by the shape of the element
T  : derived (later) based on error estimates
A  : from the actual element vertices

Problem: Derive T to reduce discretization errors



Element Jacobian calculation
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Same as P. Knupp for triangles and tets

Centered finite difference to compute the derivatives for quads and hexes:
( note that det(J)>0 for "slightly" tangled quads and hexes... )

Use the quad/hex corner to eliminate +/- (bowtie)
oscillations in the mesh



Mesh optimization

Local mesh improvement based on nonlinear optimization
of vertex locations ( Lori Frietag, Pat Knupp '99, '00, ...)

Define : f
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Candidate element objective functions include:
condition number (above)
determinant ( max(det(J), 1/det(J)) )
... 

(for example)



Mesh optimization

Steepest descent can be used to optimize the vertex position: 

Iteratively search for an optimal step size using a quadratic line search

Analytic derivatives of the objective function can be computed
since M is a constant in each element and A is a function of x

v
: 



Mesh optimization, 2D results

3 optimization sweeps

M = I 
ideal is a uniform quad



2D Triangle optimization

3 optimization sweeps

M = I 
ideal is a right triangle



3D Examples

3 optimization sweeps

M = I 
( ideal is a uniform hex)



Solution adaptive optimization

Problem: Derive T to reduce discretization errors

T will be constructed to scale the element size down
in regions where the error is (probably) large.

The objective function should incorporate both size 
and shape.



Error Indicators

Use a generalization of undivided differences 
1st Order undivided difference           : 

finite volume difference divided by circumference (surface area) instead of volume

2nd Order undivided difference           : 
average of the neighbors – vertex value

v

(normalized indicator)



Error Indicators (details)

v
1

2

j

N

A
v1

n
v1

A
vj
n

vj

n
vj
 = unit vector for face normal

A
vj
 = area for face between v and j

u
vj
 = .5 ( u

v
 + u

j  
)

N = number of adjacent vertices



Error Indicators

function normalized gradient error error indicator

Robust and efficient indicator of discretization error

� --> 0 as the grid is refined and the function is resolved 

Easy to implement on general unstructured grids 
 



“Ideal” Jacobian from Error Indicators

Use the error indicator to scale cell volumes:
shrink cells where the error appears high
leave them alone if the indicator is close to zero

1. Smooth � using 5-10 Jacobi iterations (depending on grid size
and error indicator variation )

2. Concoct T to scale the current cell volumes down
- � lives at the vertices:

average them over the vertices in the cell
or take the maximum value of the cell vertices

- scale the volume to get an isotropic reduction in cell size

0<p<4 works well 



Details:
discrete gradient, objective function

Node centered finite volume (2nd order accurate):

Objective function for the size and shape:
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2D Example, non-moving mesh

u = exp(5e5|x-x
0
|20)

5 optimization sweeps through the mesh

Note that the pulse is not well resolved

Initial:
L �= 13.41
L

1
= 1.398

L
2
= 3.250

Optimized:
L �= 9.378
L

1
= 0.8151

L
2
= 2.021

Initial:
L �= 7.412
L

1
= 0.5077

L
2
= 1.398

Optimized:
L �= 4.301
L

1
= 0.2439

L
2
= 0.6966



2D Example, non-moving mesh

Same problem, iterate 6 times:
 evaluate the test function

perform 3 optimization sweeps

Initial:
L �= 13.41
L

1
= 1.398

L
2
= 3.250

Optimized:
L �= 6.656
L

1
= 0.5129

L
2
= 1.284

Initial:
L �= 7.412
L

1
= 0.5077

L
2
= 1.398

Optimized:
L �= 2.110
L

1
= 0.1040

L
2
= 0.3090



3D Example, non-moving mesh

Initial:
L �= 7.412
L

1
= 0.2608

L
2
= 0.9418

Optimized:
L �= 8.159
L

1
= 0.1324

L
2
= 0.5660

3D is not reliable yet



2D Example, mesh with forced motion



2D Example, mesh with forced motion

L_1 and L_2 norms improve with size optimization

Inf. norm stays the same, nodes constrained to the 
interface have the highest error



Remarks

Remap codes could benefit from remeshing algorithms that
take discretization error into account.

The presented method is straightforward to implement in 
codes with similar optimization mechanisms.  New software
(Mesquite) will make adding optimization to existing codes easier. 

Future work:
more sophisticated scaling method
actually try this in an ALE code
define objective functions based on multiple solution components
anisotropic optimization


